
HIGH CURRENT NPN SILICON TRANSISTOR

■ SGS-THOMSON PREFERRED SALESTYPE

DESCRIPTION

The BDY58 is a silicon multiepitaxial planar NPN transistor in Jedec TO-3 metal case. It is intended for use in switching and linear applications in military and industrial equipment.

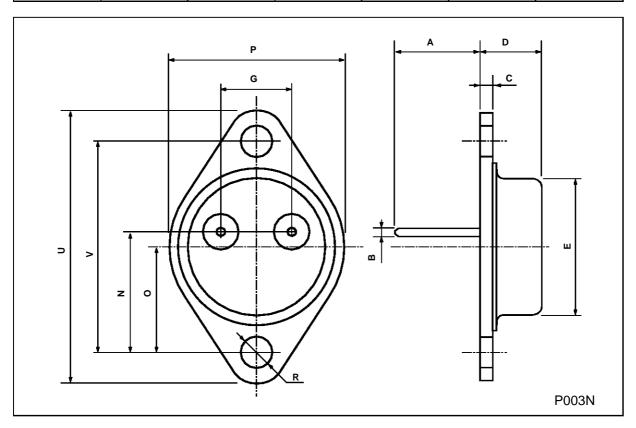
ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CBO}	Collector-Base Voltage (I _E = 0)	160	V
V _{CEO}	Collector-Emitter Voltage (I _B = 0)	125	V
V _{EBO}	Emitter-Base Voltage (I _C = 0)	10	V
Ic	Collector Current	25	Α
lΒ	Base Current	6	Α
P _{tot}	Total Dissipation at T _c ≤ 25 °C	175	W
T _{stg}	Storage Temperature	-65 to 200	°C
Tj	Max. Operating Junction Temperature	200	°C

October 1995 1/4

THERMAL DATA

R _{thj-case} The	ermal Resistance Junction-case	Max	1	°C/W	
---------------------------	--------------------------------	-----	---	------	--


ELECTRICAL CHARACTERISTICS ($T_{case} = 25$ °C unless otherwise specified)

Symbol	Parameter	Test Co	onditions	Min.	Typ.	Max.	Unit
I _{CBO}	Collector Cut-off Current (I _E = 0)	V _{CB} = 120 V				1	mA
I _{CER}	Collector Cut-off Current	$V_{CE} = 80 \text{ V}$ $R_{BE} = 10 \Omega$ $T_{case} = 100 \text{ °C}$				10	mA
I _{EBO}	Emitter Cut-off Current (I _C = 0)	V _{EB} = 10 V				0.5	mA
V _{CEO(sus)} *	Collector-Emitter Sustaining Voltage	I _C = 100 mA		125			V
V _{(BR)CBO} *	Collector-base Breakdown Voltage	I _C = 5 mA		160			V
V _{(BR)EBO} *	Base-Emitter Breakdown Voltage (I _C =0)	I _E = 5 mA		10			V
V _{CE(sat)} *	Collector-Emitter Saturation Voltage	I _C = 10 A	I _B = 1 A		0.5	1.4	V
$V_{BE(sat)^*}$	Base-Emitter Saturation Voltage	I _C = 10 A	I _B = 1 A		1.4	2	V
h _{FE} *	DC Current Gain	I _C = 10 A I _C = 20 A T _{case} = -30 °C I _C = 10 A	$V_{CE} = 4 V$ $V_{CE} = 4 V$ $V_{CE} = 4 V$	20	15	60	
f⊤	Transition Frequency	I _C = 1 A f = 10 MHz	V _{CE} = 15 V	7			MHz
ton	Turn-on time	I _C = 15 A	I _{B1} = 1.5 A			1	μs
t _{off}	Turn-off time	I _C = 15 A	$I_{B1} = -I_{B2} = 1.5 \text{ A}$			2	μs
	Clamped E _{s/b} Collector Current	V _(clamp) = 125 V L = 500 μH		15			А

^{*} Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %

TO-3 (H) MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А		11.7			0.460	
В	0.96		1.10	0.037		0.043
С			1.70			0.066
D			8.7			0.342
Е			20.0			0.787
G		10.9			0.429	
N		16.9			0.665	
Р			26.2			1.031
R	3.88		4.09	0.152		0.161
U			39.50			1.555
V		30.10			1.185	

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1995 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectrorics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

